Math 432: Set Theory and Topology Homework 5 Due date: Mar 2 (Thu)

Notation. For a set A, denote by $A^{<\mathbb{N}}$ the set of all finite sequences of elements of A, i.e.

$$
A^{<\mathbb{N}}=\bigcup_{n \in \mathbb{N}} A^{n},
$$

where $A^{0}:=\{\emptyset\}$ thinking of the empty set as the empty sequence. Furthermore, denote by $A^{\mathbb{N}}$ the set of all infinite sequences of elements of A, by which we simply mean functions $\mathbb{N} \rightarrow A$.

1. Prove that, for any set A, the following three definitions of countable are equivalent:
(1) \exists a surjection $\omega \rightarrow A$.
(2) $A \sqsubseteq \omega$.
(3) A is finite or $A \equiv \omega$.

You may not use Axiom of Choice in your proofs, so be careful when proving $(1) \Rightarrow(2)$.
Hint: For $(2) \Rightarrow(3)$, we may assume that $A \subseteq \omega$ and your task is to define a new injection $f: A \hookrightarrow \omega$ such that $f(A)$ is an initial segment of ω. Because $A \subseteq \mathbb{N}$, you can define f by recursion.
Important remark: One should think of (1) as the statement that A can be enumerated, possibly with repetitions, i.e. there is an infinite sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of elements of A such that $A=\left\{a_{n}: n \in \mathbb{N}\right\}$. This is used in proofs to avoid considering the finite and infinite cases separately because, in either case, one would be dealing with an infinite sequence.
2. Prove the following statements.
(a) If sets A, B are countable, then $A \times B$ is also countable.
(b) Countable union of countable sets is countable. More precisely, for a sequence of countable sets $\left(A_{n}\right)_{n \in \mathbb{N}}$, the set $\bigcup_{n \in \mathbb{N}} A_{n}$ is countable.
3. Prove that the following sets are countable. You may use the Schröder-Bernstein theorem, as well as Problem 2.
(a) \mathbb{Q}
(b) The set $A^{<\mathbb{N}}$ for any countable A
(c) The set $P(\mathbb{Q})$ of polynomials with rational coefficients
(d) (Optional) The set of all algebraic numbers ${ }^{1}$
4. Prove that the following sets are equinumerous with \mathbb{R}. You may use the SchröderBernstein theorem.
(a) $(0,1)$
(b) $[0,1]$

Hint: $[0,1] \subseteq(-1,2)$.
(c) $\mathbb{R} \cup A$ for any countable set A

[^0](d) The set $2^{\mathbb{N}}$ of all infinite sequences of 0-s and 1-s.
(e) \mathbb{R}^{2}

Hint: Intertwine the decimal expansions.
(f) (Optional) The set $\mathbb{R}^{\mathbb{N}}$ of all infinite sequences of reals Hint: Intertwine the decimal expansions diagonally, just like in the proof of $\mathbb{N}^{2} \equiv \mathbb{N}$.
5. (a) Prove $(0,1] \equiv(0,1)$ without using the Schröder-Bernstein theorem. Hint: Isolate a Hilbert hotel inside of $(0,1]$ and push 1 into it.
(b) (Optional) More generally, for any set A, if $\omega \sqsubseteq A$, then $A \cup\{x\} \equiv A$ for any element $x \notin A$.
6. Prove the Claim in the proof of the Schröder-Bernstein theorem (Theorem 6.5 in the notes).

[^0]: ${ }^{1}$ A real $r \in \mathbb{R}$ is called algebraic if it is a root of a polynomial with rational coefficients.

